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ABSTRACT

The most stable structures for the alkali-like dusters, M3 - Mg-, are calculated

within the framework of the simple Hickel model. The Hickel geometries are, on

average, slightly "less compact" than those of the neutral and cation dusters, a

phenomenon which may be related to the additional electronic kinetic energy of the

anions. Cluster compactness is quantified by an estimation of "soft sphere" volumes,

which also allows for a comparison of classical and experimental polarizabilities. The

Hickel model gives electron affinities which compare favorably with the experimental

results for Cu2 - Cus. To our knowledge, the Hilckel results in this paper represent the first

systematic search for the stable structures of small alkali-like anion clusters.
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1. INTRODUCTION

In previous work,l, 2 we reported Hlckel molecular orbital (HMO) structures for

alkali-like clusters Mn and Mn + with 2 < n 19. The most stable HOckel geometries were

found to be the same (except for M5
+ and M + ) as those predicted by local spin density

(LSD)3,4 and configuration interaction (CI)S calculations for the alkali metals. The Huckel

results are also in accord with the experimentally determined structures of the ground

state Group IA7,8 and Group 189-11 trimer and heptamer molecules. Moreover, when
specialized to neutral Na dusters, the relative agreement between HMO and LSD3

atomization energies was less than 4%. For cation dusters, the discrepency between LSD

atomization energies and the H~ickel values, modified by the addition of a classical charge

term, was (on average) only 2%. Huickel ionization potentials (I's) give a good fit to the

measured IWs for both Nan and Kr, reproducing both the observed odd < even alternation

in this parameter and the average, or classical, decrease towards the bulk work function.

Recently, two groups have made extensive electron affinity (EA) measurements on

copper dusters. 16,17 These data show an odd > even alternation superimposed on a

gradual increase towards the bulk work function. In this paper, we present simple Hfickel

calculations for alkali-like anion dusters MW. As in the earlier analysis of MI. and M,+, we

determine the most stable anion structures amongst all poss'bit Hfickel bonding

arrangements. Cluster atomization energies are computed by combining HMO binding

energies with a dsical charge-correlation term similar to that introduced in Ref. 2. Using

these energies plus the neutral luster results of Ref. 3, the HOckel model gives electron

affinities which reproduce quite well the experimental data for Cu-Cu8.

3
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11. CLUSTER ANIONS

The HMO stability of an n atom (neutral or ionic) metal duster is determined by the

eigenvalues (Ei) of the Hickel matrix whose elements are given by (0 _ i , j . n):

Hii - a
(1)

(-, if i is bonded to j
Hij -

0, otherwise

In Eq. (1), a and 0 denote the empirical Hickel Coulomb and resonance integrals,

respectively.

For the anionic dusters of interest here, the binding energy of a particular bonding

arrangement is

E-(n) -(n + 1)a + niei "

(2)
n + I- ni

I

where the summations extend over all occupied (ni - 2) or partially occupied (ni - 1)

molecular orbitals. It is most convenient to choose energy units for which a - 0 and 1 -1.

As in two previous studies,, 2 we term these "Hfickel units", abbreviated tohu.

In order to determine relative HMO stabilities, it is necessary to diagonalize the

Hfickel matrices for all the physically realizable bonding arrangements of a particular sized :1

duster. As described in detail in Ref 1, this procedure is facilitated by using certain

concepts from Graph Theory. Briefly, there is a 1-1 correspondence between the Hckel

matrix of an n atom duster containing q bonds and the adjacency matrix of a simple (n,q)

graph. It is relatively straightforward to generate all (n,q) graphs and then to eliminate I
those that are isomorphic by making comparisons with "standard graphs" stored in the

form of their incdence matrices. The validity of this procedure can be checked by Polya's

4
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Enumeration Theorem, which can predict the number of distinct and also connected (n,q)

graphs. The graphs may be arranged in order of decreasing stability, as defined by Eq.(2),

eliminating those for which no hard sphere packing arrangement exists. In order to

accomplish this last step, it was mathematically convenient (and physically plausible) to

require a maximum separation between all non-bonded atoms.

Figure I shows the structures found for the most stable anions, MS. - NW8 . The

corresponding binding energies are given in column 3 of Table I. While the geometries of

M4- and M - are the same as those found for the neutral (and cation) tetramer and

heptamer, 1 this is not the case for the remaining anions. Thus, linear My is 0.8 hu more

stable than the D3h arrangement favoured by the neutral and cationic species. It is

interesting to note that SCF-CI calculations on Li3
18 and Ag3

19 also find that the anion

geometry is D..h. Two isoergic structures were found for MS-. One of these, the square

pyramid as shown in Figi1c, is (by 0.2 hu) the second most stable HMO neutral. 1 While the

"less compact" 20 Dh structure is as stable as the square pyramid for M5, it is 0.6 hu less

stable for neutral M5. The most stable W" structure, Fig.1d, has very low symmetry and is

best described as a capped, distorted square pyramid. The second (by only 0.02 hu) most

stable MC- is much more compact. The structure shown in Fiagle may be derived from M7"

(Fig.If) by removing one ring atom. The most stable M duster is very similar to that

found for neutral .I&4 The lgiSg structure differs rom that of Ref.1 by the breaking of a

single bond, which lowers the anion energy by 0.1 hu but raises that of the neutral octamer

by .4 hu.

Aside from MS. (we exdude the dimer), there have been no ab-initio calculations

on the Group IA and IB duster anions. The stabilities of a few selcted structures for

silver duster anions up to about A 2 0" have been explored by semi-empirical methods,

mainly as an aid to interpreting electron affinity and ionization potential data.21,22 To our

knowledge, the HMO results presented here represent the first comprehensive attempt to

understand the structures of small anion dusters.

5
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III. ELECTRON AFFINITIES

The thermodynamic EA of a duster is given by

EA(n) = EA(1) + AE-(n) - AEO(n) (3)

where AEO(n) and &E-(n) are the atomization energies of the neutral and anion duster,

respectively. The neutral duster atomization energy is the endoergicity for

M n =nM (4)

and, in the HMO model, is numerically equal to the neutral duster binding energy, E0(n)

in hu. Table I gives E0(n) obtained from Ref. 1. Table I also gives A 0(n) for copper

dusters. These data pertain to <P> = 1.06 ± 0.07 eV, which is an average obtained 23 from

the experimental cohesive energy of the bulk24 plus the dimer and trimer atomization

energies. 25

The anion atomization energy is the energy change for the process

M n" = (n-1)M + M- (5)

and this is composed of a bond breaking term, numerically equal to E-(n) expressed in hu,

plus an electrostatic term, 4-(n). The latter represents the change in self-energy arising

from the relocalization of negative charge implied in Eq. (5). Similarily to the previously

discussed cation example,2 we write 1'(n) as

4-(n) = /8 e2{1/rI - 1/rn) (6)

where e is the electron charge and r. is the radius of an n atom anion duster. In terms of

an atomic radius, here taken to be the Wigner-Seitz radius (r.),

rn a rs(nl/ 3 + r) (7)

6



where r is a "charge spillout" parameter 2,17 for anions. We adopt r - 1, which is in

agreement with the atom-bulk interpolation discussed in the next paragraph. The choice

r - I is also in accord with the expected relative (compared to the neutral and cation)

diffusiveness of an anion cluster, but is somewhat larger than that used in Ref.17.

The numerical factor of 5/8 in Eq. (6) is chosen to give agreement with the

expression for the EA of a classical, conducting drop 26,27

EA(n) = W(-)- 5 /8 e2 /rn (8)

where W(-) is the work function of the bulk metal.2s The correspondence between these

two viewpoints may be seen as follows. For a "classical cluster", the bond energies of the

neutral and anion species are identical, so that

EA(n) - EA(1) + -(n) (9)

For this situation, Eq. (6) together with the identity EA(-.) w W(.-), leads directly to Eq.(8).

For er - 1, Eqs. (7) and (8) imply

Me-) - EA (1) - 5e2/16rs (10)

Table II makes a comparison between W(-) - EA(1) and 5e2/16r s for both the Group IA and

Group IB elements.29 Except for Li, the average deviation between these two parameters is

less than 5%.

As in the case of M. +, we use modified simple Huackel atomization energies for the

-, anions. These employ the HMO energies, column 2 of Table I, plus the charge-correlation

term, Eq. (6) with r. - r,(n1/3 + 1). Column 5 of Table I gives AE-(n)/n for Cun- assuming

= 1.06 eV and r. = 1.41 A.24 The HMO results for Cu2 " and Cu3 " (0.72 eV and 1.20 eV,

respectively) are about 10-15% smaller than the corresponding experimental data, namely

7



0.79 (3) eV and 1.4 (12) eV, from Ref.17. Table I also gives Hckel electron affinities

obtained from Eq.(1) using EA(1) = 1.24 eV. The HMO electron affinities are compared

with the corresponding experimental values1 6,17 in Figure 2. The agreement between the

two data sets is quite good. Both show an odd > even alternation in EA, superimposed on

a smoothly increasing classical result.31 The occurence of an odd-even alternation, which

also appears in IP data, has a straightforward explanation. 16,17,2 1,22 Roughly speaking, an

even numbered neutral cluster possesses a set of filled bonding orbitals plus an equal

number of empty antibonding (AB) orbitals. The IP of such a cluster is (again, roughly

speaking) the energy of the highest bonding orbital. Odd n clusters possess an additional,

half filled nonbonding (NB) orbital, lying in between the bonding and AB manifolds. The

lower energy of this orbital gives rise to the low IP of an odd atom neutral cluster. For

anions, the lowest energy AB orbital is partially filled for n even, but is empty for n odd.

As a consequence, the anion IP's are, in general, lower for even numbered duster sizes.

That there is a reasonable correspondence between this simple orbital picture and the more

realistic HMO results is evident from the orbital diagram, Fig. 2 of Ref. 2.

4 ..

IV. DISCUSSION

Within the framework of the HMO model, at least, there is a tendency for anion

clusters to adopt structures which are somewhat less compact 20 than those found for the

neutrals. One possible cause for this behaviour is the additional kinetic cnergy (KE)

associated with the extra electron of the anions. A close packing arrangement minimizes

the potential energy (PE) of a duster by maximizing the number of bonds between atoms.

For rare gas dusters, in which the electrons are confined to the atomic cores, this

interaction is dominant and so the most compact arrangement of atoms is generally

A predicted to be the most stable one.32 The stability of a metal cluster is determined not

only by the pairwise potential interaction between nearest neighbor atoms, but also by the

KE of the valence electrons which are delocalized over the molecular framework. In the

HMO model, there is a strong correspondence between the energy (Els, in hu) of the lowest

8



Is-molecular orbital and <q>, the average number of bonds (i.e. nearest neighbours) per

atom in the cluster. Table HI shows some representative examples. Included in this Table

are the most stable neutral duster structures found by HMO calculations in Ref.1, plus

some additional geometries (D. h, Td for n - 3 and 4; C4v and D5h for n = 5 which

compare differing packing arrangements and dimensionalities. For the data of Table H the

average difference between E1s and <q> is only 2%.

A similar correspondence pertains to macroscopic samples.2,24 The Is level in

HMO theory correlates with the k - 0 position (k - wavevector) of a metal in the bulk

limit.2 In the tight binding model, which is the macroscopic counterpart of Hckel theory,

the electronic energy of a metal may be expanded near k - 0 to give a PE term plus a KE

term.2o24 The latter is the same as the energy expression obtained from the Fermi gas
model for free electrons. The PE (in hu) is numerically identical to the number (6, 8 or 12)

of nearest neighbours in a (simple, body centered or face centered) cubic lattice.

Thus for an IMO duster, the total energy may be considered to be approximately

partitioned into two competing components: a negative potential contribution, nearly

equal in magnitude to the energy of the Is level, and a positive KE associated with the

delocalized valence electrons. This implies that any stabilization of less compact structures

originates in a reduction of the electronic KE, suggesting that more compact structures

confine the valence electrons to a smaller volume. This should give rise to larger KE's

which would be of rehtively greater importance for negatively charged dusters. A similar

competition might explain why, for the neutral tetramer and pentamer, the less compact

planar structures are predicted 2-6 to be more stable than the three-dimensional

arrangments favored by rare gas clusters.

It is straightforward to compute packing fractions for differing, but regular,

arrangements of atoms in a macroscopic sample.24 For a duster composed of hard sphere

(eg. argon) atoms, then the volume occupied by the electrons is independent of structure.

For the case of alkali-like atoms, however, the valence electrons presumably occupy a

9



volume defined by the shape and bonding arrangement of the individual cluster. This

volume was estimated using a soft sphere model. Each atom was assigned a unit charge

occupying a spherical volume larger than the hard sphere volume which determines

nearest neighbour distances. The soft sphere radius was chosen as the distance where the

electron density for an atomic (for example Na) Slater orbital has fallen to about 90% (say)

of its maximum value.33 The total size of a particular arrangement of n atoms is the

volume enclosed by n overlapping soft spheres, and this may be estimated by Monte Carlo

integration.34

Some pertinent soft sphere duster volumes are given in column 5 of Table IM. The

data pertain to neutral Na dusters, with estimated errors (1 standard deviation

uncertainty) given in parentheses and a total of 50,000 integration points except for n = 2-5

for which 106 points were employed. Cluster volumes are disp!ayed as total volumes,

V(n), divided by the volume of n individual atoms. For n = 6 - 9, the data correspond to

the most stable HMO neutral structures (point group given in column 2) as discussed in

Ref. 1. The data for n = 3, 4 and 5 compare the soft sphere volumes of dusters having

different degrees of compactness. Thus the D3h trimer has an approximately 4% smaller

volume than the linear D.h arrangement. Similarily, the three-dimensional tetrahedral

cluster is approximately 2.5% smaller in total volume than the planar (but more stable 2-6)

rhombus. The variation amongst pentamer structures is somewhat greater. The

pentagonal arrangement is 5% larger than the most stable 2-6 neutral (C2v point group),

and 7.5% larger than the three-dimensional square pyramid (C4v point group).

While small, these differences in soft sphere volumes are both statistically and

physically significant. The volume of an n atom duster is proportional to its dassical

polarizability, cx(n), 35implying

cx(n) _ V(n) (11)

nc(l) nV(l)
..

10
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Figure 3 compares soft sphere V(n)/nV(I) data from Table Mf with the experimental

polarizabilities for Na2 - Nag. 36 The experimental polarizabilities decrease slowly to a bulk

value of c(n)/na(1) - 0.4 - 0.5, but oscillate about the soft sphere average particularily at

small n. These oscillations arise from quantum effects and have been partially accounted

for by jellium calculations.4,37,38 The soft sphere model does not (of course) include

quantum effects and the slight discontinuity at n - 6 is a manifestation of the transition

from two-dimensional to three-dimensional geometries.

Also shown in Fig.3 is a cruder classical approximation:

a- a(n) (n1/ 3 + Co)3 (12)

na(l) n(1 + eO)3

Eq. (12) assumes that the duster is a spherical classical drop whose radius is related to an

atomic radius (ro) by

r - ro (n/3 + e) (13)

This expression is similar to Eq. (7), but here co is the "charge spillout" parameter

appropriate to a neutral duster. The classical drop curve shown in Fig. 3 pertains to

' -o 0.23, which was obtained by fitting all the polarizability data (n - 2 -40) in Ref. 36 . The

agreement between the two classical results is surprisingly good, especially in view of the

differing and independent parameterizations for each model and so lends additional

authority to the classical drop model invoked in this work and elsewhere.,2 T.'7'

In conclusion, we have determined the most stable HMO structures for the alkali-

like metal cluster anions, M 3- - Mg-. The HMO geometries are somewhat less "compact"

than those of the neutral and cation dusters, and it is suggested that this may be related to

the additional electronic KE of the anions. The cluster compactness is quantified not only

by bond enumeration, but also through an estimation of soft sphere volumes, the latter

.- 11
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being directly related to duster poanzabilities The Huckel mnodeI gif electron affinities

which compare favorably with the expenmerital resulft for Cu2 Cug
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TABLE 1. Hyackel binding energies, atomization energies and electron

affinities. Data in eV pertain to Cu, using P-1.06(7) eV (see text). Neutral

cluster energies from Ref.l.

n EOWn E-m) &EOWn/n AE-(n)/n EAWn

hu eV

1 0.0000 0.0000 0.00 0.00 1.24
2 - 2-0000 - 1.0000 1.06 0.72 0.56
3 - 3.0000 -2.8284 1.06 1.20 1.65
4 -5.1231 -41231 1.36 1.28 0.93
5 -6.6443 -6.4721 1.41 1.54 1.91
6 -9.3711 -8.2005 1.66 1.61 0.95
7 -11.1054 -11.1054 1.68 1.83 2.26
8 -14.1604 -12.7268 1.88 1.82 0.82
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TABLE II. Atomic electron affinities, EA(l), bulk work functions, W(--),

and Wiger-Seitz radii (rs, in A) for the Group IA and IB metals. Columns 5

and 6 compare W(-) - EA() with 5e2 /16rs. Energy units are eV.

EA(1) A W(-) b rs C W(-) -EA(l) 4.5/r s

Li 0.62 2-32 1.72 1.70 2.62
Na 0.55 2.75 2-08 2.20 2.16
K 0.50 2.30 2.57 1.80 1.75
Rb 0.49 2.09 275 1.60 1.64
Cs 0.47 214 2.98 1.67 1.51

Cu 1.24 4.65 1.41 3.41 3.19
Ag 1.30 4.26 1.60 2.% 2.81
Au 2.31 5.1 1.59 2.8 2.83

a From Ref. 30.
b From Ref. 28.
c From Ref. 24.
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TABLE III. Comparison of the average number of bonds/atom <q> with

the lowest Hckel orbital energy (E1 s in hu), and of soft sphere volume

polarizabilities V(n) with the experimental cz(n) for Nan.

n Point Group <q> a I ElsI V(n)/nV(1) b x(n)/nca(1) C

2 Dh 1.00 1.00 0.920 0.800
3 13h 2.00 2.00 0.862 0.980
3 D..h  1.33 1.41 0.896
4 Td 3.00 3.00 0.814
42h 2.50 2.56 0.835 0.856
5 C4v 3.20 3.24 0.798
5 C2 v 2.80 2.94 0.819 0.907
5 DSh 2.00 2.00 0.859
6 C5v 3.33 3.45 0.781 0.857
7 Dsh 4.29 4.32 0.742 0.723
8 D2d 4.50 4.54 0.726 0.687
9 De, 4.67 4.70 0.717 0.738

a From Ref. 1.
b Estimated error 0.003 for n 2 - 5; 0.013 for n 6 - 9.
c From Ref. 36.
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FIGURE CAPTIONS

Fig Geometries for the most stable HMO dusters, M3- - Mg-"

Fig. 2. Comparision of Hickel and experimental electron affinities for Cu- - Cu8 -. Open
circles pertain to this work. Triangles and full circles are EA data from Refs.16 and 17,
respectively.

Fig. 3. Comparison of experimental polarizabilities (Na data from Ref. 36) with soft sphere
(see text) and classical drop approximations.
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